Bayesian Extreme Components Analysis
نویسندگان
چکیده
Extreme Components Analysis (XCA) is a statistical method based on a single eigenvalue decomposition to recover the optimal combination of principal and minor components in the data. Unfortunately, minor components are notoriously sensitive to overfitting when the number of data items is small relative to the number of attributes. We present a Bayesian extension of XCA by introducing a conjugate prior for the parameters of the XCA model. This Bayesian-XCA is shown to outperform plain vanilla XCA as well as Bayesian-PCA and XCA based on a frequentist correction to the sample spectrum. Moreover, we show that minor components are only picked when they represent genuine constraints in the data, even for very small sample sizes. An extension to mixtures of Bayesian XCA models is also explored.
منابع مشابه
Non-stationary extreme value analysis in a changing climate
This paper introduces a framework for estimating stationary and non-stationary return levels, return periods, and risks of climatic extremes using Bayesian inference. This framework is implemented in the Non-stationary Extreme Value Analysis (NEVA) software package, explicitly designed to facilitate analysis of extremes in the geosciences. In a Bayesian approach, NEVA estimates the extreme valu...
متن کاملBayesian Estimation of Reliability of the Electronic Components Using Censored Data from Weibull Distribution: Different Prior Distributions
The Weibull distribution has been widely used in survival and engineering reliability analysis. In life testing experiments is fairly common practice to terminate the experiment before all the items have failed, that means the data are censored. Thus, the main objective of this paper is to estimate the reliability function of the Weibull distribution with uncensored and censored data by using B...
متن کاملA Bayesian Networks Approach to Reliability Analysis of a Launch Vehicle Liquid Propellant Engine
This paper presents an extension of Bayesian networks (BN) applied to reliability analysis of an open gas generator cycle Liquid propellant engine (OGLE) of launch vehicles. There are several methods for system reliability analysis such as RBD, FTA, FMEA, Markov Chains, and etc. But for complex systems such as LV, they are not all efficiently applicable due to failure dependencies between compo...
متن کاملAn Overview of Statistical Methods for Studying the Extreme Rainfalls in Mediterranean
Extreme rainfall is one of the most devastating natural events. The frequency and intensity of these events has increased. This trend will likely continue as the effects of climate change become more pronounced. As a consequence, it is necessary to evaluate the different statistical methods that assess the occurrence of the extreme rainfalls. This research evaluates some of the most important s...
متن کاملSensitivity analysis of extreme inaccuracies in Gaussian Bayesian Networks
We present the behavior of a sensitivity measure defined to evaluate the impact of model inaccuracies over the posterior marginal density of the variable of interest, after the evidence propagation is executed, for extreme perturbations of parameters in Gaussian Bayesian networks. This sensitivity measure is based on the Kullback-Leibler divergence and yields different expressions depending on ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009